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FOREWORD
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of the ASTM E647-81 Method of Test. Mr. D. Roalef assisted in
precracking and in conducting the tests. Ms. Elizabeth Dirkes
assisted in data reduction and plotting.
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SECTION 1
INTRODUCTION

The present technology for fatigue crack growth rate
testing of metals generally employs visual examination of the
fatigue crack to determine crack extension between applied load
cycles. Visual examination requires personal supervision,
specimen surface preparation for crack tip enhancement, and an
adequate optics system for accurate crack length measurements.
The accuracy of fatigue crack growth rate data is dependent upon
the attention given to each of the above mentioned elements in
the measurement system. The need for consistently accurate
measurements and less manpower dependence necessitates the use
of an automated data acquisition system. One method of automated
data acquisition makes use of compliance measurements. The
compliance is the inverse stiffness of the specimen and changes

as a function of crack length as illustrated in Figure 1.

In a previous investigationl*, the University of Dayton
Research Institute (UDRI) characterized the fatigue crack growth
properties of Rapid Solidification Technique (RST) P/M Aluminum
X7091. In these tests, visual crack growth measurements were
collected and load-displacement plots were recorded. Fatigue
crack growth rate data (da/dN versus AK) were generated using
the visual measurement data. The tests were conducted in
accordance with ASTM E647-81 Test Method2
Amplitude Fatigue Crack Growth Rates Above 10

for Constant-Load-

8 m/cycle.

The purpose of this report is to evaluate fatigue crack
growth rates generated from COD compliance measurements. The
compliance data from the X7091 Aluminum crack growth study are

reduced to generate da/dN versus ..K curves which arc compared

*Superscript numbers refer to literature citations, sec list of
references.
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to the da/dN versus AK curves generated from the visual
measurement data. Differences between the resulting crack
growth rate curves and reasons for these differences are
discussed. Recommendations are made concerning the use of

compliance to generate fatigue crack growth rate data.




SECTION 2
TEST METHODS

2.1 SPECIMEN GEOMETRY AND LOADING CONDITIONS

The fatigue crack growth rate tests were conducted using
a standard compact tension specimen with a width (W) of 2.0
inches and a thickness (B) of 0.25 inch. The specimen geometry
conformed to ASTM Method E647-81 (Figure 2). Each test specimen
was measured on a Gaertner Machinist's microscope equipped with
a Gaertner Digital Readout System. See Table 1 for a summary of

specimen dimensions.

The specimens were precracked on a 20,000 pound MTS
materials testing machine at a frequency of 20 Hz. The
precracking was started at a load between 600 and 800 pounds
and a stress ratio (R) of 0.1; after crack initiation, the loads
were progressively lowered until a crack growth rate of less
than 4 x 10-7 inches/cycle was achieved. The stress ratio was
increased to 0.3 before the completion of precracking. The
fatigue crack growth rate tests were conducted on a 10,000 pound
MTS materials testing machine under constant amplitude load.

The test conditions were such that the maximum load was set at
a level 20 pounds above the last precracking load and the stress

ratio was 0.3.

The frequency at the start of all tests was set at 20 Hz.
To obtain the load-displacement data required for compliance
analysis, the frequency was reduced to 0.5 Hz for several cycles
so that the load-displacement data could be recorded using an
X-Y plotter. When the frequency was periodically lowered to
0.5 Hz, the load was noted to increase which could result in a
possible overload condition. To prevent an overload, the MTS
load controls were readjusted. The loading conditions for each

test are summarized in Table 2.

As the crack grew and the displacement increased, it was
also necessary to adjust the MTS load controls to maintain the

prescribed load parameters. To minimize the change in load
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Figure 2. Compact Tension Specimen for Fatigue Crack Growth
Rate Testing (See Table 1 for Physical Measurements).
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controls, the testing frequency for some tests was gradually

reduced from 20 Hz to 5 Hz as the displacement increased.

2.2 VISUAL CRACK LENGTH MEASUREMENTS

The c" ack length was monitored on both sides of the
specimen, using microscopes mounted on micrometer slides
equipped with digital readouts. Crack length measurements
were scheduled to be made after approximately every 0.020 inches
of crack growth. Actual measurements were made after every
0.018 * 0.006 inches of crack growth. ASTM E647-81 Test Method
required crack length measurements to be made every 0.040 inches
for a/W < 0.60 and 0.020 inches for a/W > 0.60. Accuracy of the
visually measured crack length extensions was * 0.002 inches;
well within * (.004 inches as recommended in ASTM E647-81 Test
Method.

The fatigue crack was to be extended to approximately one
inch beyond the notch tip, but several tests were discontinued
sooner because of significant yielding at the crack tip or because
the fatigue crack tip had departed from the plane of symmetry by
more than * 5 degrees which was measured from the notch root.

The average initial (ao) and final (af) crack lengths between
which crack growth data were collected for each specimen can be
found in Table 2.

UDRI was requcested to begin collecting fatigue crack
growth data after a precrack length of 0.030 to 0.050 inches
(as measured from the notch) had been attained. ASTM Method
E647-81 requires a minimum fatigue precrack of 0.1B {(specimen
thickness) or hN (notch height), whichever is greater (see
Table 1 for B and hN dimensions). A precrack length of 0.030 to
0.050 inches does not meet this requirement and all data
recorded before the minimum fatigue crack length listed in Table
2 are considered invalid data and were disregarded for subsequent

analysis.




Although. the specimen thickness is such that the fatigue
crack length measurements are required on only one side, measure-
ments were made on both the front and back sides of the specimen.
The average value of these measurements was used in the calcu-
lations. The ASTM standard indicates that data are invalid
where the two crack lengths at a given number of cycles differ
by more than 0.025W or 0.25B, whichever is less. Whenever the
difference in the two crack lengths exceeded the allowable
tolerances, the specimen grips were clamped on the longer crack
length side in an attempt to bring the crack length differential
into tolerance. On several specimens, it was not possible to
obtain a valid crack length differential; these data are there-
fore invalid according to ASTM E647-81 Test Method. The data
(a vs N) collected either under the clamping conditions or where
front and back crack lengths differed more than the ASTM E647

requirements were not utilized for any da/dN calculations.

2.3 COMPLIANCE MEASUREMENTS

A crack opening displacement (COD) technique was used to
determine specimen compliance. Compliance is the crack opening
displacement per unit load. The crack opening displacement was
meisured at the front face of the specimen (one half inch from
the load line). The crack opening displacement and load were
autographically plotted after approximately every 0.100 inches
of crack growth. Figure 3 shows typical load-displacement curves

exhibited during the test program.

The load versus crack opening displacement curves were
evaluated to determine the compliance values. Compliance - the
inverse of the slope - was determined by visually fitting a
straight line to the upper linear portion of the loading curve as
illustrated in Figure 3. The typical type of load-displacement
behavior with slight nonlinearity at low loads is illustrated in
Figure 3a. Several specimens exhibited the more extreme nonlinear
behavior on the lower portion of the COD curves as shown in

Figure 3b. This behavior was possibly caused by internal
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{residual) stresses that resulted from the heat treating process
or that were generated by the fatigue crack growth process. The
compliance was determined on that linear portion of the curve
above the initial nonlinear behavior. Typically, the linear

portion occurred between 30-90% of maximum load.

The crack opening displacement was measured using a
double-cantilever displacement gage with a sensitivity of 0.002
inches/volt and an accuracy of * 0.5 percent of full scale or
+ 0.0001 inches over a 0.02 inch range. The load was measured
on the 1,000 pound range of a 10,000 pound MTS load cell with an
accuracy of # 0.5 percent of range. Repeated measurements of
the slope of a load-displacement curve did not vary more than
*+ 2 percent. When all systematic and random errors were taken
to their 1limit, the maximum error in compliance could be five
percent.

11




SECTION 3
DATA REDUCTION

3.1 VISUAL CRACK GROWTH RATE

The crack length versus elapsed cycles (a versus N)
were used to determine the rate of fatigue crack growth. The
data were reduced using the seven point incremental polynomial
technique as described in ASTM E647-81 Test Method. This tech-
nique numerically "smooths" the data by fitting a second-order

polynomial to sets of seven successive data points.

The rate of crack growth at Ni' the middle cycle count
value, is obtained from the derivative of the second-order

polynomial, which is given by the following expression:

(da/dN) . = El + 2b, (N, - C,)/C 2 (1)
ai C2 2 i 1 2

The value of AK associated with this da/dN value is computed

using the crack length, ai, obtained from the second-order poly-

nomial expression evaluated at N..

3.2 COMPLIANCE CRACK GROWTH RATE

Mathematical expressions for the determination of crack
length have been formulated for various displacement-measurement
locations on the specimen. The displacement-measurements reported
for this test series were recorded for a location that had a
distance in front of the load line (X) to specimen width (W)
ratio of -0.25 (Figure 2). For X/W = -0.25, crack length is a

function of compliance as expressed by the formula3

2 3

a - -236.820"

a - 1.0010-4.66950 t+18.460U"
(2)

4 5

+1214.9U "-2143.6U

12




where U = (%’);i +1=(EBC)T + 1 (2a)

and where

= Crack Length (inches)

= Specimen Width (inches)

= Specimen Thickness (inches)
Elastic* Modulus (psi)

= Crack Opening Displacement (inches)
= Load (pounds)

QO v < M wE o
"

= V/P = Compliance (inches/pound)

The crack growth rates associated with the compliance measure-
ments were calculated using the secant method described in the
ASTM E647-81 Test Method. The difference in crack lengths (Aa)
for the calculations was obtained from the successive compliance
calculated crack lengths and the difference in cycles (AN) was
obtained from the respective cycle count at which the compliance

calculations were taken, i.e.,

da _ _

'z = an N, - N (3)
The average crack length (a) obtained from successive compliance
measurements was used to calculate the corresponding AK value

(see Figure 4).

*
Plane stress or plane strain conditions as appropriate.

13
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SECTION 4
RESULTS AND DISCUSSION

4.1 INITIAL DATA REDUCTION AND COMPARISON »

In Equation 2, all the parameters are either measured
prior to the test or monitored during the course of the test
except E, the modulus. The modulus employed to make these cal-
culations was a "handbook" value, 10.6 x lO6 psi. Using Equation
3 in conjunction with Equation 2 resulted in the compliance
determined crack growth rates shown in Figure 5. The crack growth
rate data obtained from visual measurements using the seven-point
polynomial incremental step method are also included. A compari-
son of the visual and compliance results indicates that the
growth rates have a similar trend but one is shifted relative to
the other. The visual data are assumed to reflect the correct
crack growth behavior since the ASTM E647-81 Test Method was
followed.

The three crack growth rate data sets chosen for presen-
tation in Figure 5 show distinctively that the compliance >
determined crack growth rates differ significantly from the
visual seven-point polynomial based rates. The crack growth rate
data from the other 13 specimens are summarized in Figures Al
through Al3 of the Appendix. O0Of the 16 data sets, the three sets »
in Figure 5 exhibited the greatest difference between the two
methods of obtaining crack growth rate behavior. While the other
13 data sets showed better agreement between the two crack growth

rate methods, the compliance results generally were above the »

visual results. It was decided that an improvement in the
compliance method was required before it could be accepted for
calculating crack growth rates. A study was therefore conducted
to evaluate the effect of potcntial errors in the compliance » ®

method on crack growth rate results.
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4.2 THE IMPACT OF POTENTIAL ERRORS

The impact of potential errors in compliance calculated
crack growth rate behavior can be analyzed using the non-
dimensional compliance paramecter EBC given in Equation 2a.
Figures 6, 7, and 8 describe the effect that +1, +5, and 10
percent errors in EBC can have on tﬁe errors in the compliance
calculated crack length, (a), in its associated stress-intensity
factor range, (AK), and in the incremental extension, {(ja), of

compliance calculated crack length, respectively.

Figure 6 shows the impact of a fixed percent error in
EBC which results in rapidly decreasing percent errors in the
estimated value of crack length as the crack length increases.
It is noted that the maximum percent error in estimated crack
length over the range of interest is only slightly larger than

the percent error in EBC.

Figure 7 shows the effect of percent errors in EBC on
the percent error in the stress-intensity factor range (AK).
It is seen that the percent error in 7K is almost independent
of crack length for a fixed error in EBC. The reason for the
crack length independence behavior shown in Figure 7 can be
obtained through a coupling of Figure 6 results with an analysis
of the impact of crack length errors on the error in AK. Figure
9 describes the results of the latter analysis; note that the
percent errors 1in K increcase exponentially as a function of
crack iength. Figure 7 also shows that the percent error in AK
is approximately the same as (but less than) the percent error
in EBC.

Figure 8 shows the e¢ffect of percent errors in EBC on
the percent error in the crack growth increment.  The crrors in

“a werce calculated for approximately 0.1 inch increment of crack

growth which were mecasured experimentally. The crror was

plotted in Figure 8 as a function of the mean crack length for

that increment. Additional calculations of crrors wers

determined for arbitrarily small values of "a.  These limiting
17
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results produced curves which approximate the errors associated
with experimental increments. It can be seen from Figure 8, that
a systematic (percent) error in EBC will result in a systematic
percent error in Aa which is opposite in sign and which is upper-
bounded at about one-half of the error in EBC. The absolute
value of the percent errors in Aa are noted to gradually increase
throughout the crack length range of interest for a fixed percent
error in EBC. The reason that the percent errors in Aa are
opposite in sign to the percent errors in EBC can be obtained
using Figure 6, where it is observed that the gradient of crack

length error relative to crack length is negative.

Figures 6 through 9 were found to be very helpful in
focusing on the reasons for apparent errors in crack growth
rate behavior. Before addressing how the above information can
be utilized to bring compliance established crack growth rate
behavior in line with visual behavior, we wish to consider the
potential causes for error in the factors involved in the EBC

product.

4.3 AN ASSESSMENT OF POTENTIAL ERRORS

There can be both systematic and random errors in
measuring and using compliance to calculate the crack growth
rate behavior. This subsection will identify an attempt to
guantify the systematic and random errors relative to their
effect on crack growth rate behavior of a single specimen. The

random errors will be considered first.

The primary random error that could cause problems with
compliance based crack growth rate behavior is the result of
the measurements of compliance based on determining the inverse
slopes of successive load-displacement curves. Compliance (C)
values were determined from the slopes of lines that were
visually fitted to the upper linear portion of the load-displace-
ment curves. The errors associated with this measurement proce-

dure would result in random errors in the compliance calculated

21
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crack lengths and in random behavior about nominal crack growth
rate curves. These errors would not produce a general offset
of a specimen's crack growth rate behavior as established by

compliance and by visual methods, as was illustrated in Figure 5.

There are a number of potential systematic errors which
could directly influence the error in EBC and the resulting crack
growth rate behavior. There could be errors in the measurements
of specimen geometry and of the location of the displacement gage.
Errors could exist in both the calibration of the load-displace-
ment measurement system and in the assumption whereby a constant
value of elastic modulus (E) was used for all specimens indepen-
dent of the heat treatment received. The magnitude of each of

these errors are considered in turn.

The geometric measurements of specimen height, width,
and thickness can all be determined to within % 0.001 inches.
The most significant error would be that of thickness and it
would produce an error of less than + 0.5 percent in EBC for all
the specimens tested in this program. This error in EBC would
produce a negligible error in compliance calculated crack lengths,
based on the analysis presented in Figure 6. The projected error
in the resulting crack growth rates and stress-intensity factor

range would also be negligible for such thickness errors.

Errors associated with the actual displacement (COD)
measurement location can result in systematic errors in compliance
(C). In this investigation, the COD-measurement location was the
integrally machined knife-edges on the front face of the specimen,
0.500 inches to the right of the loading line shown in Figure 2
for a specimen width (W) of 2.000 inches. This measurement
location corresponds to a location parameter value (X/W) of
-0.250 relative to the Hudak ct al.4 scheme of COD measurement
location. An X/W = 0 corresponds to the loading line. An upper
bound on error in (X/W) was estimated to be t+ 2 percent for the

set of sixtcen spccimens.
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Using the wide-range elastic compliance expression for
compact tension specimens4, the value of a/W was calculated for
the various values of X/W using EBC values from 20 to 400.
Figure 10 shows that the resulting plots of a/W versus X/W are
nearly linear. Therefore, we use an approximate relationship
between a/W and X/W, i.e.,

a
(7

. (a/W) o - (@/W)_ 550 «

a/W = 0 0 = (=.250) ) (4)

to describe each of the curves shown in Figure 10. The effect

of the error in the COD-measurement location (X/W) upon a/W, was
evaluated by substituting -0.255 and -0.245 in Equation 4 for each
EBC curve given in Figure 10. The results of the error evaluation
are presented in Figure 1l1l. As shown, it was determined that the
error in crack length ranged from approximately 1 percent at a/W
equal to 0.25 to less than 0.1 percent at a/W equal to 0.8. The
error in AK resulting from the error in COD~measurement location
would be approximately 0.4 percent over the entire range of a/w
from 0.25 to 0.8. Thus, the COD-measurement location had little
effect on growth rate curves and would not produce the magnitude

of general offsets observed in Figure 5.

The cumulative errors in the load-displacement system
were estimated in Section 2 to result in about a five percent
maximum error in compliance for any one load-displacement measure-
ment. As also indicated in Section 2, part of this error is due
to calibration of the equipment (load cell, displacement gage,
x-y recorder, etc.) and part of this error is due to the graphical
measurement of the slope of the load-displacement curve. If one
isolates the systematic errors associated with calibration, the
measurement system might result in a maximum of three percent
error in compliance. An error of threce percent in compliance is
more than sufficient to cause an offset in the compliance

determined fatigue crack growth ratc behavior.
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Another systematic error which may occur in the calcula-
tions of crack growth rate behavior is the error in assumption of
the elastic modulus (E) as a constant. In Section 2, the elastic
modulus was assumed to be represented by a handbook value of
E = 10.6 x 10°

for the 7091 powder aluminum alloys considered in the test

psi. This assumption could be clearly in error

program. This material was subjected to a wide range of
processing and heat treatment conditions and exhibited substan-
tial scatter in the yield strength property as shown in Table 1.
The variance in elastic modulus is given by one-half the
variance in yield strength, i.e., if E varies by t 3 percent,
then it can have a substantial impact on the estimates of EBC

and thus crack growth rate behavior.

The systematic errors associated with the compliance
system and with the assumption of elastic modulus are basically
coupled since it is not practical to conduct tensile tests on all
crack growth rate test specimens (in order to accurately estimate
the elastic modulus). However, because the two types of errors
can be coupled with the product EBC used to estimate crack growth
behavior, it is relatively easy to develop a procedure which

minimizes the total systematic error for any given test.

4.4 DATA REDUCTION USING AN EFFECTIVE MODULUS

One method of evaluating the potential effect of coupled
errors in compliance and elastic modulus is to utilize the

inverse representation of Equation 2 which expresses compliance

as a function of crack length. The dimensionless compliance
(EBC) for the compact tension specimen was given by Hudak et al.3
as:
EBC = (1 + 0'f5) (%}{)2 (1.61369 + 12.6778.
(5)
~14.2311.% - 16.610 5 + 35.0499.% - 14.49432.°)




where o = a/W. If measured values of crack length and
compliance are utilized in conjunction with Equation 5, then

an effective modulus (Eeff) can be derived from each specimen.
The effective modulus replaces the elastic modulus (E) in
Equation 5 and provides an absolute equality for measured values

of visual crack length (a ) and the compliance at this

Reference

aReference' The calculated effective modulus values and the

visual crack lengths (a for the 16 specimens are

Reference)
presented in Table 3. The average effective modulus was 11.06

6
X 10

set of 16 specimens. Table 3 also lists the ratio of the

psi with a standard deviation of 0.69 x 106 psi for the

effective modulus to the handbook modulus (f = Eeff/E) for each
specimen. The effective modulus is seen to range from about

14 percent higher to a 9 percent lower than the handbook value,
with a mean offset which is about 4 percent high. Effective
modulus values were calculated at other crack lengths where
compliance measurements were available and the results were
somewhat similar to those given in Table 3. It was then decided
to utilize the Table 3 effective modulus values in place of the
handbook modulus for calculations of crack length based on

Equation 2.

Figure 12 shows the visual crack length versus the
compliance calculated crack length using a "handbook”™ modulus of
10.6 x lO6 psi for the set of 16 specimens and using Table 3
effective modulus value calculated from a known crack length for
each of the 16 specimens. The use of the calculated effective
modulus values has significantly consolidated the data, resulting
in better correlation between the visual crack length and the
compliance calculated crack length over the full range of crack

lengths.

As a specific example of the improvement in crack length
determination resulting from using the effective modulus is
shown in Figure 13. Not only does the effective modulus improve
the accuracy of the determination near the crack length at which
the effective modulus is calculated, but it improves the accuracy

throughout the crack length range of interest.
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TABLE 3
EFFECTIVE MODULUS VALUES

?eff
pecimen N Effect%ve Mogulus - Eeff
Number Reference (psi x 107) E*
CTX4 .6074 12.01 1.133
CTX32 .9921 11.11 1.048
CT331 .8501 11.29 1.065
CT472 .5387 11.66 1.100
FC41l .6095 11.25 1.061
FC42 .6737 10.86 1.025
FC61 .7651 10.73 1.012
FC71 .5533 11.05 1.042
FCc91l .6095 10.37 0.978
SMAl .5896 10.12 0.955
SME .7090 11.93 1.125
SMI1TF .6545 12.07 1.139
SM3TF .6231 9.70 0.915
SM6TF .5661 10.88 1.026
SM8TF .6083 11.54 1.089
SM8TS?2 .6087 10.41 0.982
Mean = 11.061 1.043 ]
Standard Deviation = 0.692 0.0653 -9
Coefficient of Variation = 6.26% 6.26%
= 10.6 x 10% psi °
°
*
29
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The data presented in Figure 5 indicate that the trend
of the compliance calculated crack growth rates based on the
"handbook"” modulus are comparable to the visual crack growth
rates but offset from them. The major change in the compliance
determined crack growth rate curves when an effective modulus
is used instead of the "handbook" modulus is a shift in the
curves. The use of an effective modulus in EBC has an impact on
AK and Aa/AN calculations as shown by Figures 7 and 8,
respectively. A systematic percent error in EBC creates
approximately the same percent error in AK and about half that
percent error in the growth rate. The use of an effective
modulus for calculating crack length results in very good
correlation between the visual and compliance calculated data as

presented in Figure 14.
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SECTION 5
CONCLUSIONS AND RECOMMENDATIONS

Compliance is a viable method for measuring the fatigue
crack length on a compact tension specimen. The use of compliance
allows for automatic data acquisition, resulting in significant

manpower savings, and increased testing time.

Compliance measurements must not be calculated from the
minimum and maximum end points of the load-displacement curves.
Closure or other factors may cause nonlinearity in the load-
displacement curves and using the end points of the curve will
result in erroneous compliance values which will result in
erroneous crack length calculations. Compliance values must be
determined from the linear portion of the load-displacement

curve above any nonlinearity caused by closure or other factors.

The compliance value was determined from the loading
portion of the load-displacement curve. Generally, the load-
displacement curve exhibited little hysteresis and either the
loading or unloading portion of the curve could have been used.
The use of an effective modulus value could possibly compensate
for any differences in compliance value between the loading and

unloading portion of the load-displacement curve.

It is recommended that an initial visual crack length and
an initial compliance value from the load-displacement curve be
used to calculate an effective modulus value which can then be

used over the full range of a/W values.

The tolerances for a compact tension specimen given in
ASTM Test Method E647-81 allows considerable latitude in the
specimen dimensions. If the crack-opening-displacement is being
measured at the front face of the specimen and the specimen
tolerances are taken to their limits, an error of up to 6.5
percent in the COD-measurement location (X/W) can occur. If X/W
is maintained less than * 2 percent, the AK values will have less

than ¢t 0.5 percent error for 0.25 < a/W < 0.8,
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The accuracy of fatigue crack growth rate versus AK
calculated from compliance values is dependent upon the accuracy
with which the absolute value of 'a' can be determined. The
absolute value of 'a' is affected by the modulus value used in
the compliance crack length calculation but the change in 'a' is
relatively unaffected as long as the precision with which com-
pliance is determined is constant. This indicates that the
accuracy in Aa would be good even though the absolute value of

'a' could be in error.

For optical measurements, ASTM Test Method E647-81
requires a technique capable of resolving crack lengths of 0.004
inches or 0.002W, whichever is greater. For consistency between
the compliance determined AK values and those determined from
visual measurements, it is recommended that an effective modulus

value be selected such that the compliance calculated crack

lenoth varies less than 0.004 inches from the actual crack length

as determined visually. Equation 5 provides an easy and accurate

method for determining the effective modulus within the accuracy

suggested herein.
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APPENDIX A

VISUAL AND COMPLIANCE DETERMINED
CRACK GROWTH RATE DATA
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